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Introduction

The Classical theorems of Korovkin impressed several
mathematicians since their discovery for the simplicity and the
potential. Positive approximation process play a fundamental
role in the approximation theory and it appears in a very
natural way in several problems dealing with the approximation
of continuous functions and qualitative properties such as
monotonicity, convexity, shape preservation and so on. A
considerable amount of research extended the Korovkin’s
theorems to the setting of different function spaces or more
general abstract spaces such as Banach spaces, Banach
algebras, Banach lattices, C∗-algebras and so on during last
fifty years.
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Korovkin theorem

The classical approximation theorem due to Korovkin in 1953
unified many existing approximation processes

Theorem
Let {φn : n = 1,2,3, ...} be a sequence of positive linear maps
from C([a,b]) to itself. For each function
gk(x) = xk ,x ∈ [a,b], k = 0,1,2, if

lim
n→∞

φn(gk) = gk uniformly on [a,b],k = 0,1,2.

Then

lim
n→∞

φn(f ) = f uniformly on [a,b], for all f in C [a,b].
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Korovkin set

Definition
A set G in C([a,b]) is called a Korovkin set or test set, if for
every sequence {φn}, n = 1,2,3, ... of positive linear maps from
C([a,b]) to itself lim

n→∞
φn(g) = g uniformly on [a,b] for every

g ∈ G implies that lim
n→∞

φn(f ) = f uniformly on [a,b] for every
f ∈ C([a,b]).

Korovkin theorem proves that {1,x ,x2} is a minimal Korovkin
set for C([a,b]).
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Choquet boundary and Saskin’s theorem

Definition
Let S ⊂ C(X ) containing the constant function 1, where X is a
compact Hausdorff space. The Choquet boundary ∂S of S is
defined as ∂S = {x ∈ X : εx |S has a unique positive linear
extension to C(X ), where εx denotes the evaluation functional
defined by εx (f ) = f (x), f ∈ C(X )}.

Theorem
Let S be a subset of C(X ) that separates points of X and
contains constant function. Then S is a Korovkin set in C(X )
if and only if the Choquet boundary ∂G = X. Where
G = linear span(S)
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Peak points

Definition
Let G be a closed subspace of C(X ), separating points and
containing the identity 1X of C(X ). A point x0 ∈ X is a peak
point of G if there exists a g ∈ G for which
g(x0) = ‖g‖, |g(x)|< ‖g‖, x 6= x0.
The set of peak points of G is denoted by P(G).

Theorem
Let G be a closed subspace of C(X ), separating points and
containing the identity 1X of C(X ); then P(G)⊂ ∂G.

Theorem
Let G be a closed subspace of C(X ), separating points and
containing the identity 1X of C(X ); then ∂G ⊂ P(G).
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Non-commutative Choquet boundary

In 1969 Arveson introduced the notion of boundary
representation.

Definition
Let S be an operator system in a C∗-algebra A such that
A = C∗(S). A representation π : A→ B(H) of A is said to have
unique extension property (UEP) for S, if the only unital
completely positive (UCP) map φ : A→ B(H) that satisfies
φ|S = π|S is φ = π itself.

Definition
Let S be an operator system in a C∗-algebra A such that
A = C∗(S). An irreducible representation π : A→ B(H) of A is
said to be a boundary representation for S if π has unique
extension property (UEP) for S.
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Hyperrigid set

In 2011 Arveson introduced noncommutative analogue of
classical Korovkin set as follows.
Definition
A set G of generators of an abstract C∗-algebra A is said to be
hyperrigid if for every faithful representation A⊆ B(H) of A on
a Hilbert space and every sequence of unital completely
positive maps {φn} from B(H) to itself,

lim
n→∞
‖φn(g)−g‖=0, ∀ g ∈G⇒ lim

n→∞
‖φn(a)−a‖=0, ∀ a∈A.
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Arveson’s hyperrigidity conjecture

Theorem
For every separable operator system S that generates a
C∗-algebra A = C∗(S), such that S is hyperrigid if and only if
For every nondegenerate representation π : C∗(S)→ B(Hπ) on
a separable Hilbert space, π|S has unique extension property.

Theorem
Let S be a separable operator system generating a C∗- algebra
A such that A = C∗(S). If S is hyperrigid, then every
irreducible representation of A is a boundary representation for
S
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Arveson’s hyperrigidity conjecture

Hyperrigidity conjecture
Still, hyperrigidity conjecture is not completely resolved.
Hyperrigidity conjecture relates boundary representations of
C∗-algebras for operator systems with hyperrigidity of operator
systems. It states that, if every irreducible representation
of a C∗-algebra A is a boundary representation for a
separable operator system S ⊆ A, then S is hyperrigid.
Arveson proved the conjecture for C∗-algebras having
countable spectrum, while Kleski established the conjecture for
all type-I C∗-algebras.

P. Shankar
The non-commutative analogue of Korovkin’s sets and peak points



Peaking representations

Arveson introduced the notion of peaking representation, which
is the non-commutative analogue of classical peak points.

Definition
Let S be a separable operator system and let A = C∗(S) is the
C∗-algebra generated by S. An irreducible representation
π : A→ B(H) is said to be a peaking representation for S if
there is an n ≥ 1 and an n×n matrix [sij ] over S such that

|| (π[sij ]) ||>|| (σ [sij ]) ||

for every irreducible representation σ not unitarily equivalent
to π.
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Arveson and Kleski

Theorem
Let S be an operator system that generates a finite dimensional
C∗-algebra C∗(S). An irreducible representation of C∗(S) is a
boundary representation for S if and only if it is peaking for S.

Theorem
Let S be a separable operator system that generates a
C∗-algebra C∗(S). Then every peaking representation for S is
a boundary representation for S.
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Weak Choquet boundary

Definition
Let A be a unital C∗-algebra and S be an operator system of A
such that A = C∗(S)-the C∗-algebra generated by S. An
irreducible representation π : A→ B(Hπ) is called weak
boundary representation for S of A if π|S has a unique UCP
map extension of the form V ∗πV , namely π itself, where
V : Hπ → Hπ is an isometry.

The set of all weak boundary representations for S of A is
called weak Choquet boundary of S and denoted by ∂WS. We
can observe that all the boundary representations are weak
boundary representations for S. Thus ∂S ⊆ ∂WS.

P. Shankar
The non-commutative analogue of Korovkin’s sets and peak points



Example

Let G = linear span(I,S,S∗), where S is the unilateral right
shift in B(H) and I is the identity operator. Let A = C∗(G) be
the C∗-algebra generated by G . We have K (H)⊆ A,
A/K (H)∼= C(T) is commutative, where T denotes the unit
circle in C and the spectrum Â of A can be identified with
{Id}∪T. We know that εt is a one dimensional irreducible
representation of A for all t ∈ T, therefore εt is a weak
boundary representation for G of A for all t ∈ T. Note that
Id|G has more than one UCP extension from the class
CP(A, Id ,HId ). Observe that S∗Id(·)S is also an extension of
Id|G . Therefore, Id is not a weak boundary representation.
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Finite reperesentation

Arveson introduced the notion of finite representation in the
setting of subalgebras of C∗-algebras. He further proved that
any representation π of a subalgebra A of a C∗-algebra A on a
Hilbert space H is finite representation if and only if for every
isometry V in B(H), the condition V ∗π(a)V = π(a) for all a
in A implies that V is unitary.

Theorem
Let A be a C∗-algebra and S be an operator system in A such
that A = C∗(S). Let π be an irreducible representation of A on
a Hilbert space H. Then π is a finite representation of S if and
only if π is a weak boundary representation for S of A.
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Quasi hyperrigidity

Definition
A set S of generators of a C∗-algebra A is said to be quasi
hyperrigid, if for every nondegenerate representation π of A on
a Hilbert space Hπ and for every isometry V : Hπ → Hπ the
condition V ∗π(s)V = π(s) for all s in S implies that
V ∗π(a)V = π(a) for all a in A.

Here we explore the relation between hyperrigidity and quasi
hyperrigidity. It is trivial to see that hyperrigid sets are quasi
hyperrigid. However, the converse is not true and hence the
notion is strictly weaker. We illustrate an example.
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Example

Let Mn(C) denote the set of all n×n matrices over C, where
n ≥ 3. Define a unital completely positive map Φ on Mn(C) as
given below. Let

M =



a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
. . . . . . .
. . . . . . .

an1 an2 an3 . . . ann


be arbitrary.
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Example

Now define Φ on Mn(C)

Φ(M) =



a11 a12 0 . . . 0
a21 a22 0 . . . 0
0 0 a22 . . . 0
. . . a22 . . .
. . . . . . .
0 0 0 . . . a22


Now let M = T , where a21 = 1 and all other entries equal to 0.
Let S = span{I,T ,T ∗} and A = C∗(S). Consider the sequence
of unital completely positive maps {Φn} on C∗(S) where
Φn = Φ for all n. Note that for all n, Φn(s) = s ∀ s ∈ S, but
Φn(TT ∗) 6= TT ∗. This implies that S is not a hyperrigid set.
However, if V is any isometry such that V ∗V = I, then
VV ∗ = I, since A is finite dimensional. Thus, S is quasi
hyperrigid, but fails to be a hyperrigid set.
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Quasi hyperrigidity

Theorem
Let S be a separable operator system and A = C∗(S). Then S
is quasi hyperrigid if and only if for every non-degenerate
representation π : A→ B(Hπ) on a separable Hilbert space, π|S
has a unique UCP map extension of the form V ∗πV , where
V : Hπ → Hπ is an isometry.

Theorem
Let S be a separable operator system generating a C∗-algebra
A. If S is quasi hyperrigid, then every irreducible
representation of A is a weak boundary representation for S.
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Quasi hyperrigidity

Problem
If every irreducible representation of A is a weak boundary
representation for a separable operator system S ⊆ A, then is S
quasi hyperrigid?

Theorem
Let A = C∗(S) be the C∗-algebra generated by a separable
operator system S such that A has countable spectrum. If
every irreducible representation of A is a weak boundary
representation for S then S is quasi hyperrigid.
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Weak unique extension property

Definition
Let S be an operator system generating a C∗-algebra A. Let
π : A→ B(Hπ) be a representation, then π is said to have
weak unique extension property (WUEP) for S if π is the only
UCP map extension of π|S of the form V ∗π(·)V , where V is an
isometry on Hπ .

Theorem
Let S be a separable operator system generating a Type
I C∗-algebra A. If every irreducible representation of A is a
weak boundary representation for S, then for any UCP map
V ∗πV : A→ A′′, where π : A→ A′′ is a representation and
V ∈ A′′ is an isometry such that V ∗π(s)V = π(s) for all s ∈ S
implies that V ∗π(a)V = π(a) for all a ∈ A.
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Weak Peak Points

Definition
Let A be a unital C∗-algebra and S be an operator system of A
such that A = C∗(S), the C∗-algebra generated by S. An
element π of Â is called a weak peak point for S if there exists
s ∈ S such that
(i) |〈π(s)ξπ ,ξπ〉|= ‖s‖ for some ξπ ∈ Hπ with ‖ξπ‖= 1,
(ii) |〈σ(s)ξσ ,ξσ 〉|< ‖s‖ for all ξσ ∈ Hσ with ‖ξσ‖= 1,
where σ is any irreducible representation not equivalent to π.
We will denote the set of all weak peak points for S by Pw (S).
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Weak boundary representations

We observed that the Choquet boundary of an operator system
is contained in weak Choquet boundary of it and this inclusion
is strict. So it would be interesting to know which weak
Choquet boundary points are Choquet boundary points of an
operator system. The following theorem gives partial answer to
this query.

Theorem
Let S be an operator system in a C∗-algebra A = C∗(S). If
π ∈ Â is a weak peak point for S, π is a weak boundary
representation for S and π|S is pure, then π is a boundary
representation for S.
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Examples

Example 1
Let the Volterra integration operator V acting on the Hilbert
space H = L2[0,1] is given by

Vf (x) =
∫ x

0
f (t)dt, f ∈ L2[0,1].

It is well known that V generates the C∗-algebra K = K (H) of
all compact operators. Let S = span

(
V ,V ∗,V 2,V 2∗) and S is

hyperrigid. Let S̃ = S +C ·1 be an operator system generating
the C∗-algebra Ã = K +C ·1. The irreducible representations
of Ã are π and ρ given by

π(T + λ1) = T , for T ∈ K , λ ∈ C

ρ(T + λ1) = λ , for T ∈ K , λ ∈ C
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Examples

Example 1
In fact these are the only two irreducible representations upto
unitary equivalence. S̃ is a hyperrigid operator system implying
that π and ρ are boundary representations for S̃ of Ã. Also, S̃
is quasi hyperrigid and therefore π, ρ are weak boundary
representations for S̃.
Let V +V ∗ ∈ S̃ be the projection on the space of constants
and let the constant function 1 ∈ L2[0,1], ||1||= 1

| 〈π(V +V ∗)1,1〉 |= 1 = ||V +V ∗||.

For all ξρ ∈ C, ||ξρ ||= 1

|
〈
ρ(V +V ∗)ξρ ,ξρ

〉
|= |

〈
0ξρ ,ξρ

〉
|= 0< ||V +V ∗||.

Therefore π is a weak peak point.

P. Shankar
The non-commutative analogue of Korovkin’s sets and peak points



Examples

Example 1
Let 1 ∈ S̃ and 1 ∈ C, ||1||= 1

| 〈ρ(1)1,1〉 |= 1 = ||1||.

For all ξπ ∈ L2[0,1], ||ξπ ||= 1

| 〈π(1)ξπ ,ξπ〉 |= | 〈0ξπ ,ξπ〉 |= 0< ||1||.

Hence ρ is a weak peak point. Also, π and ρ restricted to S̃
are pure.
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Examples

Example 2
Let G = span (I,S,S∗,SS∗), where S is the unilateral right shift
in B(H) and I the identity operator. Let A = C∗(G) be the
C∗-algebra generated by G . We have, K (H)⊆ A.
A/K (H)∼= C(T) is commutative, where T denotes the unit
circle in C and the spectrum Â of A can be identified with
{Id}∪T. Since S is an isometry, G is hyperrigid and this will
imply that all the irreducible representations of A are boundary
representations for S. Clearly G is quasi hyperrigid, so all the
irreducible representations are weak boundary representations
for S.
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Examples

Example 2
Now we prove that identity representation Id of A is a weak
peak point for G . Let e1 = (1,0,0...,0) and let E = I−SS∗ ∈ G
be the rank one projection. We have | 〈Id(E )e1,e1〉 |= 1 = ||E ||
and for any irreducible representation π which is not equivalent
to identity, π(E ) = 0. So we have | 〈π(E )η ,η〉 |= 0< ||E || for
all unit vectors η ∈ Hπ . This proves that Id is a weak peak
point. Also, Id|G is pure.
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Thank You
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